Erratum to “Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness” [J. Approx. Theory 163 (2011) 1373–1399]

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness

We characterize local embeddings of Besov spaces B p,r involving only a slowly varying smoothness b into classical Lorentz spaces. These results are applied to establish sharp local embeddings of Besov spaces in question into Lorentz-Karamata spaces. As consequence of these results, we are able to determine growth envelopes of spaces B p,r and to show that we cannot describe all local embedding...

متن کامل

Corrigendum to "Best approximation in polyhedral Banach spaces" [J. Approx. Theory 163 (11) (2011) 1748-1771]

The present note is a corrigendum to the paper “Best approximation in polyhedral Banach spaces”, J. Approx. Theory 163 (2011) 1748–1771. c ⃝ 2014 Elsevier Inc. All rights reserved.

متن کامل

Sharp Embeddings of Besov Spaces with Logarithmic Smoothness

We prove sharp embeddings of Besov spaces B p,r (R ) with the classical smoothness σ and a logarithmic smoothness α into Lorentz-Zygmund spaces. Our results extend those with α = 0, which have been proved by D. E. Edmunds and H. Triebel. On page 88 of their paper (Math. Nachr. 207 (1999), 79–92) they have written: “Nevertheless a direct proof, avoiding the machinery of function spaces, would be...

متن کامل

Local Growth Envelopes of Besov Spaces of Generalized Smoothness

The concept of local growth envelope (ELGA, u) of the quasi-normed function space A is applied to the Besov spaces of generalized smoothness B p,q (Rn).

متن کامل

Erratum to: Atomic and molecular decompositions of anisotropic Besov spaces

We give a corrected proof of Lemma 3.1 in [1]. While the statement of [1, Lemma 3.1] is true, its proof is incorrect. The argument contains a serious defect which can not be easily corrected. The inequality that appears in [1] before (3.5) is not true. If this inequality was true, then we could conclude that, even for a non doubling measure μ, (3.5) was also true. But there exist some non doubl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2012

ISSN: 0021-9045

DOI: 10.1016/j.jat.2011.10.007